La fragmentación de rocas por voladura es fundamental en el sector minero. Este proceso busca optimizar el tamaño de la roca para su posterior extracción, transporte y procesamiento. Predecir esta fragmentación se vuelve una tarea crucial para mejorar la eficiencia operativa; sin embargo, la aplicación de fórmulas simplificadas carece de precisión y adaptabilidad a las variaciones litológicas. Este estudio propone el uso de inteligencia artificial (IA) para la estimación precisa del diámetro promedio de rocas ígneas, sedimentarias y metamórficas. A partir de un conjunto de 97 datos de fragmentación y voladuras reales a nivel mundial, se evaluaron los algoritmos de Random Forest (RF), Support Vector Regressor (SVR) y Kernel Ridge Regression (KRR), junto con la ecuación de Kuz-Ram, ampliamente utilizada en la industria. Los resultados indican que los modelos de IA superan notablemente la ecuación convencional. RF ofrece la mayor precisión con valores de MSE de 0.0017 y R2 de 95.38 %. En contraste, SVR alcanza valores de 0.0064 y 83.13 %, mientras que KRR obtiene 0.016 y 69.60 %. El adecuado desempeño de estos algoritmos ha motivado el desarrollo de una aplicación que facilita a los usuarios la visualización de mallas de perforación, establecer dimensiones concretas y comparar las proyecciones del tamaño medio de las rocas. Esta herramienta facilita la toma de decisiones informadas, mejorando los procesos de minería, fomentando resultados más confiables y sostenibles en distintos contextos operativos.

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Referencias
Amoako, R., Jha, A., & Zhong, S. (2022). Rock Fragmentation Prediction Using an Artificial Neural Network and Support Vector Regression Hybrid Approach. Mining, 2(2), 233–247. https://doi.org/10.3390/mining2020013
Aryafar, A., Rahimdel, M. J., & Tavakkoli, E. (2020). Selection of the most proper drilling and blasting pattern by using madm methods (A case study: Sangan iron ore mine, iran). Rudarsko Geolosko Naftni Zbornik, 35(3), 97–108. https://doi.org/10.17794/rgn.2020.3.10
Bunga, A. P., Noguel, J. A. O., & Quesada, R. W. (2019). Predicción y evaluación de la granulometría de la pila de material obtenido en las voladuras en la mina Prediction and assessment of material gradation obtained through blasting in Polymetallic Castellano mine , Pinar del Río , Cuba. Ciencia & Futuro, 10(1), 37–49. https://doi.org/ISSN 2306-823X
Das, R. K., Dhekne, P. Y., & Murmu, S. (2023). Development of a Multiplication Factor for the Kuz-Ram Model to Match the Fragment Size Obtained from Wipfrag Image Analysis. Journal of Mines, Metals and Fuels, 71(12), 2414–2425. https://doi.org/10.18311/jmmf/2023/34116
de Castro, D. F. (2021). Comparative analysis of fragmentation models for undeground blasting. UNDERGROUND MINING ENGINEERING 39 (2021) 29-42 UNIVERSITY OF BELGRADE - FACULTY OF MINING AND GEOLOGYFACULTY OF MINING AND GEOLOGY, 39(39), 29–42. https://doi.org/10.5937/podrad2139029f
Górriz, J. M., Álvarez-Illán, I., Álvarez-Marquina, A., Arco, J. E., Atzmueller, M., Ballarini, F., Barakova, E., Bologna, G., Bonomini, P., Castellanos-Dominguez, G., Castillo-Barnes, D., Cho, S. B., Contreras, R., Cuadra, J. M., Domínguez, E., Domínguez-Mateos, F., Duro, R. J., Elizondo, D., Fernández-Caballero, A., … Ferrández-Vicente, J. M. (2023). Computational approaches to Explainable Artificial Intelligence: Advances in theory, applications and trends. Information Fusion, 100(July), 101945. https://doi.org/10.1016/j.inffus.2023.101945
Guerrero-Rodriguez, B., Salvador-Meneses, J., Garcia-Rodriguez, J., & Mejia-Escobar, C. (2024). Improving Landslides Prediction: Meteorological Data Preprocessing Based on Supervised and Unsupervised Learning. Cybernetics and Systems, 55(6), 1332–1356. https://doi.org/10.1080/01969722.2023.2240647
Hasanipanah, M., Amnieh, H. B., Arab, H., & Zamzam, M. S. (2018). Feasibility of PSO–ANFIS model to estimate rock fragmentation produced by mine blasting. Neural Computing and Applications, 30, 1015–1024. https://doi.org/10.1007/s00521-016-2746-1
Hekmat, A., Munoz, S., & Gomez, R. (2019). Prediction of Rock Fragmentation Based on a Modified Kuz-Ram Model. En Proceedings of the 27th International Symposium on Mine Planning and Equipment Selection - MPES 2018 (pp. 69–79). Springer International Publishing. https://doi.org/10.1007/978-3-319-99220-4_6
Hu, J., Song, Z., Si, J., Cao, G., Nie, L., & Chen, A. (2023). Prediction of Rock Mass Parameters Based on PCA and Random Forest Method. Geotechnical and Geological Engineering, 41, 4629–4640. https://doi.org/10.1007/s10706-023-02536-z
Hudaverdi, T., Kulatilake, P. H. S. W., & Kuzu, C. (2006). Prediction of blast fragmentation using multivariate analysis procedures. International Journal for Numerical and Analytical Methods in Geomechanics, 30(13), 1303–1336. https://doi.org/https://doi.org/10.1002/nag.957
Kuznetsov, V. M. (1973). The mean diameter of fragments formed by blasting rock. Journal of Mining Science, 9(2), 144–148. https://link.springer.com/article/10.1007/BF02506177
Lawal, A. I. (2021). A new modification to the Kuz-Ram model using the fragment size predicted by image analysis. International Journal of Rock Mechanics and Mining Sciences, 138. https://doi.org/10.1016/j.ijrmms.2020.104595
Leng, Z., Fan, Y., Gao, Q., & Hu, Y. (2020). Evaluation and optimization of blasting approaches to reducing oversize boulders and toes in open-pit mine. International Journal of Mining Science and Technology, 30(3), 373–380. https://doi.org/10.1016/j.ijmst.2020.03.010
Li, E., Yang, F., Ren, M., Zhang, X., Zhou, J., & Khandelwal, M. (2021). Prediction of blasting mean fragment size using support vector regression combined with five optimization algorithms. Journal of Rock Mechanics and Geotechnical Engineering, 13(6), 1380–1397. https://doi.org/10.1016/j.jrmge.2021.07.013
Lin, S.-B. (2023). Adaptive Parameter Selection for Kernel Ridge Regression.
López, E., López, C., Ortiz, F., & Pernia, J. (2003). Manual de Perforación y Voladura de Rocas. En Ingeopress. http://www.entornografico.com/ingeopres/Ing_119/ing119_sum.htm
Miao, Y., Zhang, Y., Wu, D., Li, K., Yan, X., & Lin, J. (2021). Rock Fragmentation Size Distribution Prediction and Blasting Parameter Optimization Based on the Muck-Pile Model. En Mining, Metallurgy and Exploration (Vol. 38, pp. 1071–1080). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s42461-021-00384-0
Mwango, V. (2015). Optimization of Blasting Parameters-A case study of Nchanga Open Pits. INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, 4(September 2015), 45–51. https://doi.org/ISSN 2277-8616
Ohadi, B., Sun, X., Esmaieli, K., & Consens, M. P. (2020). Predicting blast-induced outcomes using random forest models of multi-year blasting data from an open pit mine. Bulletin of Engineering Geology and the Environment, 79(1), 329–343. https://doi.org/10.1007/s10064-019-01566-3
Rabbani, A., Samadi, H., Fissha, Y., Agarwal, S. P., Balsara, S., Rai, A., Kawamura, Y., & Sharma, S. (2024). A comprehensive study on the application of soft computing methods in predicting and evaluating rock fragmentation in an opencast mining. Earth Science Informatics, 17(6), 6019–6034. https://doi.org/10.1007/s12145-024-01488-z
Raj, A. K., Choudhary, B. S., & Deressa, G. W. (2024). Prediction of Rock Fragmentation for Surface Mine Blasting Through Machine Learning Techniques. Journal of The Institution of Engineers (India): Series D. https://doi.org/10.1007/s40033-024-00812-7
Rojas Linares, E. L. (2018). Un nuevo enfoque predictivo de la fragmentación en la Voladura de Rocas. Industrial Data, 21(1), 17–26. https://doi.org/10.15381/idata.v21i1.14907
Rosales-Huamani, J. A., Perez-Alvarado, R. S., Rojas-Villanueva, U., & Castillo-Sequera, J. L. (2020). Design of a predictive model of rock breakage by blasting using artificial neural networks. Symmetry, 12(9), 1–17. https://doi.org/10.3390/SYM12091405
Saadoun, A., Boukarm, R., Fredj, M., Menacer, K., Boudjellal, D., Hafsaoui, A., & Yilmaz, I. (2024). Optimal Blast Design Considering the Effects of Geometric Blasting Parameters on Rock Fragmentation : A Case Study. In World Summit: Civil Engineering-Architecture-Urban Planning Congress, 1, 136–146. https://doi.org/10.3897/ap.7.e0146
Shafl, A. (2024, octubre 1). Random Forest Classification with Scikit-Learn. datacamp. https://www.datacamp.com/tutorial/random-forests-classifier-python
Su, H., & Ma, S. (2022). Study on the stability of high and steep slopes under deep bench blasting vibration in open-pit mines. Frontiers in Earth Science, 10(September), 1–15. https://doi.org/10.3389/feart.2022.990012
Vu, T., & Bao, T. (2021). Development of a predictive model of rock fragmentation for Nui Phao open-pit mine in Vietnam using multiple-output Neural Networks and Monte Carlo Dropout technique. ResearchSquare, 1, 1–14. https://doi.org/https://doi.org/10.21203/rs.3.rs-171960/v1
Wu, Z., Wu, Y., Weng, L., Li, M., Wang, Z., & Chu, Z. (2024). Machine learning approach to predicting the macro-mechanical properties of rock from the meso-mechanical parameters. Computers and Geotechnics, 166. https://doi.org/10.1016/j.compgeo.2023.105933
Xie, C., Nguyen, H., Bui, X. N., Choi, Y., Zhou, J., & Nguyen-Trang, T. (2021). Predicting rock size distribution in mine blasting using various novel soft computing models based on meta-heuristics and machine learning algorithms. Geoscience Frontiers, 12(3), 101108. https://doi.org/10.1016/j.gsf.2020.11.005
Yakovlev, V. L., Zharikov, S. N., Regotunov, A. S., & Kutuev, V. A. (2024). Methodological basis for adaptation of the drilling and blasting parameters to changing mining and geological conditions when mining complex-structured deposits. Mining Industry Journal (Gornay Promishlennost), 6, 89–97. https://doi.org/10.30686/1609-9192-2024-6-89-97
Yin, R., Liu, Y., Wang, W., & Meng, D. (2020). Sketch Kernel Ridge Regression Using Circulant Matrix: Algorithm and Theory. IEEE Transactions on Neural Networks and Learning Systems, 31, 3512–3524. https://doi.org/10.1109/TNNLS.2019.2944959
Zamora-Paredes, V., Arauzo-Gallardo, L., Raymundo-Ibanez, C., & Perez, M. (2020). Optimal mesh design methodology considering geometric parameters for rock fragmentation in open-pit mining in the Southern Andes of Peru. IOP Conference Series: Materials Science and Engineering, 758(1). https://doi.org/10.1088/1757-899X/758/1/012015
Zhang, R., Li, Y., & Gui, Y. (2023). Prediction of rock blasting induced air overpressure using a self-adaptive weighted kernel ridge regression. Applied Soft Computing, 148. https://doi.org/10.1016/j.asoc.2023.110851
Zhang, Y. L., Qin, Y. G., Armaghsni, D. J., Monjezi, M., & Zhou, J. (2024). Enhancing rock fragmentation prediction in mining operations: A Hybrid GWO-RF model with SHAP interpretability. Journal of Central South University, 31(8), 2916–2929. https://doi.org/10.1007/s11771-024-5699-z
Zhao, J., Li, D., Zhou, J., Armaghani, D. J., & Zhou, A. (2024). Performance evaluation of rock fragmentation prediction based on RF-BOA, AdaBoost-BOA, GBoost-BOA, and ERT-BOA hybrid models. Deep Underground Science and Engineering, 4, 3–17. https://doi.org/10.1002/dug2.12089