In vitro evaluation of chemical fungicides for the control of Moniliophthora roreri, the causal agent of cacao frosty pod rot (Theobroma cacao L.)

Darlyn José Amaya-Márquez
https://orcid.org/0000-0003-4961-0283
Danny Daniel Avilés Párraga
Angie Lisseth Peñaherrera-Morales
https://orcid.org/0009-0004-8631-914X
Javier Ulises Mendoza Thompson
https://orcid.org/0000-0002-5891-453X
Evelyn Elizabeth Sánchez Castro
https://orcid.org/0009-0001-0502-3901
Antonio Gonzalo Álava Murillo
https://orcid.org/0000-0002-9786-7879
Abstract

Cacao cultivation represents an important sector for the Ecuadorian economy, as it is one of the country’s main export products; however, diseases such as Moniliophthora roreri cause significant losses, and their control continues to be a challenge for producers. One solution to counteract this disease is the in vitro evaluation of chemical fungicides, as it allows for the characterization of phytopathogenic isolates and the estimation of chemical molecule dosages for phytosanitary management. For this reason, this study consisted of evaluating two fungicides: copper sulfate pentahydrate at 200, 2000, and 20000 mg·L⁻¹ and azoxystrobin at 1.0, 0.1, and 0.01 mg·L⁻¹ using two isolates of M. roreri under in vitro conditions. A completely randomized factorial design with seven replications was used. The radial growth of the fungus was evaluated to estimate the percentage of growth inhibition (PIC). The results showed that azoxystrobin achieved 100% PIC at 1 mg·L⁻¹ and was highly sensitive, regardless of the M. roreri isolate, although statistically the PIC between strains was significant. Copper sulfate pentahydrate reached maximum PIC at a dosage of 20000 mg·L⁻¹ and was classified as insensitive, with no significant differences in PIC between isolates of M. roreri. It is concluded that M. roreri is highly sensitive and insensitive to azoxystrobin and copper sulfate hydrate, respectively. The doses tested provide the basis for analyzing a larger number of isolates and subsequently applying trials under field conditions.

DOWNLOADS
Download data is not yet available.
How to Cite
Amaya-Márquez, D. J., Avilés Párraga, D. D., Peñaherrera-Morales, A. L., Mendoza Thompson, J. U., Sánchez Castro, E. E., & Álava Murillo, A. G. (2025). In vitro evaluation of chemical fungicides for the control of Moniliophthora roreri, the causal agent of cacao frosty pod rot (Theobroma cacao L.). Revista Tecnológica - ESPOL, 37(2), 132-143. https://doi.org/10.37815/rte.v37n2.1325

References

Amaya-Márquez, D. J., Espinoza-Lozano, R. F., Villavicencio-Vásquez, M. E., Sosa del Castillo, D., & Pérez-Martínez, S. (2021). Inhibición y estimulación del crecimiento micelial de Moniliophthora roreri por flutolanil en poblaciones de Ecuador. Acta Agronómica, 70(3), 240-248. https://doi.org/10.15446/acag.v70n3.88905

Amaya Márquez, D., León Vásquez, A., Mendoza Thompson, J., Avilés Párraga, D., Álava Murillo, A., Calle Romero, K., & Farah Asang, S. (2024). Efectividad fitosanitaria de la remoción de frutos enfermos con embolse para la disminución de Moniliophthora roreri en cultivo de cacao (Theobroma cacao L.). Pro Sciences: Revista De Producción, Ciencias E Investigación, 8(54), 1–11. https://doi.org/10.29018/issn.2588-1000vol8iss54.2024pp1-11

Álvarez, J. C., Martínez, S. C., & Coy, J. (2014). Estado de la moniliasis del cacao causada por Moniliophthora roreri en Colombia. Acta agronómica, 63(4), 388-399. http://dx.doi.org/10.15446/acag.v63n4.42747

Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M., & Parr‐Dobrzanski, B. (2002). The strobilurin funguicidas. Pest Management Science: formerly Pesticide Science, 58(7), 649-662. https://pubmed.ncbi.nlm.nih.gov/12146165/

Calva, C. 2016. Control químico in vitro de Phytophthora sp. agente causal de la mancha negra en el cultivo de cacao. Trabajo de titulación Ingeniero Agrónomo, Universidad Técnica de Machala, Machala. Ecuador. 40pp. https://repositorio.utmachala.edu.ec/handle/48000/7637

Carrasquilla-Batista, A., Chacón-Rodríguez, A., Núñez-Montero, K., Gómez-Espinoza, O., Valverde, J., & Guerrero-Barrantes, M. (2016). Regresión lineal simple y múltiple: aplicación en la predicción de variables naturales relacionadas con el crecimiento microalgal. Revista Tecnología en Marcha, 29, 33-45. http://dx.doi.org/10.18845/tm.v29i8.2983

Carrasco-de la Cruz, T. P., Olivo-Vidal, Z. E., Sánchez-Peregrino, J. A., & Mendoza-Lorenzo, P. (2023). Evaluación del efecto antifúngico del sulfato de cobre (II) pentahidratado en Moniliophthora roreri. Journal of Basic Sciences, 9(25), 8-18. https://revistas.ujat.mx/index.php/jobs/article/view/6133

Chudzik, B., Tracz, I. B., Czernel, G., Fiołka, M. J., Borsuk, G., & Gagoś, M. (2013). Amphotericin B–copper (II) complex as a potential agent with higher antifungal activity against Candida albicans. European Journal of Pharmaceutical Sciences, 49(5), 850-857. https://doi.org/10.1016/j.ejps.2013.06.007

Bailey, B. A., Evans, H. C., Phillips‐Mora, W., Ali, S. S., & Meinhardt, L. W. (2018). Moniliophthora roreri, causal agent of cacao frosty pod rot. Molecular plant pathology, 19(7), 1580-1594. https://pubmed.ncbi.nlm.nih.gov/29194910/

Cuervo-Parra, J. A., Sánchez-López, V., Ramirez-Suero, M., & Ramírez-Lepe, M. (2011). Morphological and molecular characterization of Moniliophthora roreri causal agent of frosty pod rot of cocoa tree in Tabasco, Mexico. https://scialert.net/abstract/?doi=ppj.2011.122.127

Di Rienzo, J., Balzarini, M., Gonzalez, L., Casanoves, F., Tablada, M., & Walter Robledo, C. (2010). Infostat: software para análisis estadístico. https://www.infostat.com.ar/

Edgington, L.V.; Khew, K.L.; Barrow, G.L. 1971. Fungitoxic spectrum of benzimidazole compounds. Phytopathology 61:42- 44. https://www.apsnet.org/publications/phytopathology/backissues/Documents/1971Articles/Phyto61n01_42.pdf

Espinoza-Lozano, F., Amaya-Márquez, D., Pinto, C. M., Villavicencio-Vásquez, M., Sosa del Castillo, D., & Pérez-Martínez, S. (2022). Multiple introductions of Moniliophthora roreri from the Amazon to the Pacific region in Ecuador and shared high azoxystrobin sensitivity. Agronomy, 12(5), 1119. https://doi.org/10.3390/agronomy12051119

Evans, H. C., Stalpers, J. A., Samson, R. A., & Benny, G. L. (1978). On the taxonomy of Monilia roreri, an important pathogen of Theobroma cacao in South America. Canadian Journal of Botany, 56(20), 2528-2532. https://doi.org/10.1139/b78-305

Ezziyyani, M., Sánchez, C. P., Ahmed, A. S., Requena, M. E., & Castillo, M. E. C. (2004). Trichoderma harzianum como biofungicida para el biocontrol de Phytophthora capsici en plantas de pimiento (Capsicum annuum L.). In Anales de biología (No. 26, pp. 35-45). Servicio de Publicaciones de la Universidad de Murcia. https://revistas.um.es/analesbio/article/view/30441

Gaetke, L.M.; Chow, C.K. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 2003, 189, 147–163. https://doi.org/10.1016/S0300-483X(03)00159-8

Leite, F. G., Sampaio, C. F., Cardoso Pires, J. A., de Oliveira, D. P., & Dorta, D. J. (2024). Toxicological impact of strobilurin fungicides on human and environmental health: a literature review. Journal of Environmental Science and Health, Part B, 59(4), 142-151. https://doi.org/10.1080/03601234.2024.2312786

Love, J., Selker, R., Marsman, M., Jamil, T., Dropmann, D., Verhagen, J., ... & Wagenmakers, E. J. (2019). JASP: Graphical statistical software for common statistical designs. Journal of Statistical Software, 88, 1-17. https://www.jstatsoft.org/article/view/v088i02

Molinari, M., Bentivegna, D. J., Daddario, J. F. F., & Tucat, G. (2024). Residuos de Cu en el ambiente cuando se usa Sulfato de cobre pentahidratado para el control de malezas. https://agris.fao.org/search/en/providers/124846/records/67050b28b1dfe472e144e2d2

Naghavi, F., Khoshroo, S. M. R., Kazemipour, M., & Zarandi, M. M. (2023). Potassium Copper Sulfate Hydrate Nanoparticles Modulated Salinity Stress through Improving Germination, Growth, and Biochemical Attributes of Common Bean (Phaseolus vulgaris L.). Russian Journal of Plant Physiology, 70(6), 152. https://doi.org/10.1134/S1021443723600617

Phillips-Mora, W., Aime, M.C., & Wilkinson, M.J. (2007). Biodiversity and biogeography of the cacao (Theobroma cacao) pathogen Moniliophthora roreri in tropical America. Plant Pathology, 56(6), 911-922. https://doi.org/10.1111/j.1365-3059.2007.01646.x

Portilla-Farfan, F. (2018). Agroclimatología del Ecuador (647 pp.). Quito, Ecuador: Editorial Universitaria Abya-Yala. ISBN: 978-9978-10-310-4 https://pure.ups.edu.ec/es/publications/agroclimatology-of-ecuador

Plasencia-Vázquez, A. H., Vilchez-Ponce, C. R., Ferrer-Sánchez, Y., & Veloz-Portillo, C. E. (2022). Efecto del cambio climático sobre la distribución potencial del hongo Moniliophthora roreri y el cultivo de cacao (Theobroma cacao) en Ecuador continental. Terra Latinoamericana, 40. https://doi.org/10.28940/terra.v40i0.1151

Pscheidt, J. W., & Ocamb, C. M. (2022). Copper-based bactericides and fungicides. Pacific Northwest pest management handbooks. Oregon State University, Corvallis https://pnwhandbooks.org/plantdisease/pesticide-articles/copper-based-bactericides-fungicides

Quevedo Damián, I. (2012). Evaluación de fungicidas sistémicos y de contacto en el control de la moniliasis (Moniliophthora roreri) del cacao (Theobroma cacao) (Master's thesis). http://hdl.handle.net/10521/924

Ren, Y., Feng, L., Xu, X., Xiao, J., Jiang, Y., & Li, T. (2025). Epigenetic regulation on fungal disease affecting plant-based food: A review from the perspectives of host, pathogen and their interactions. Food Bioscience, 106633. https://doi.org/10.1016/j.fbio.2025.106633

Rodríguez-Velázquez, N. D., Fernández Pavía, S. P., Pineda-Vaca, D., Tlacuilo Cano, J. D., López Guillén, G., Chávez Ramírez, B., & Estrada de los Santos, P. (2024). Genetic diversity of Moniliophthora roreri from cacao trees growing in the Soconusco area, Chiapas, Mexico. Plant Disease, (ja). https://doi.org/10.1094/PDIS-04-24-0873-RE

Solórzano Sabando, R. A. (2018). Efectos de fungicidas, químico y biológico en el control de tres enfermedades fungosas en el cultivo de cacao (Theobroma cacao L.) CCN-51 en la Parroquia Zapotal. https://repositorio.uteq.edu.ec/handle/43000/3275

Tenegusñay Naula, V. R. (2022). Sensibilidad in vitro de Moniliophthora roreri HC Evans, agente causal de la moniliasis del cacao (Theobroma cacao L.) a fungicidas de diferentes modos de acción. https://dspacesrv.espoch.edu.ec/handle/123456789/18365

Torres de la Cruz, M., Ortiz García, C. F., Téliz Ortiz, D., Mora Aguilera, A., & Nava Díaz, C. (2013). Efecto del azoxystrobin sobre Moniliophthora roreri, agente causal de la moniliasis del cacao (Theobroma cacao). Revista mexicana de fitopatología, 31(1), 65-69. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-33092013000100007

Torres-de-la-Cruz, M., Quevedo-Damián, I., Ortiz-García, C. F., del Carmen Lagúnez-Espinoza, L., Nieto-Angel, D., & Pérez-de la Cruz, M. (2019). Control químico de Moniliophthora roreri en México. Biotecnia, 21(2), 55-61. https://doi.org/10.18633/biotecnia.v21i2.906

Theophanides, T., & Anastassopoulou, J. (2002). Copper and carcinogenesis. Critical reviews in oncology/hematology, 42(1), 57-64. https://doi.org/10.1016/S1040-8428(02)00007-0

Varela, A. E., Arias, A., & Reyes, Y. (2003). Kinetic of copper-sulfate pentahydrate production from scrap copper. Revista Técnica de la Facultad de Ingeniería Universidad del Zulia, 26(2), 101-108. https://ve.scielo.org/scielo.php?pid=S0254-07702003000200004&script=sci_arttext

Zhang, M., An, Q., Wang, Y., Ye, S., & Zhu, X. (2024). Copper sulfate combined with photodynamic therapy enhances antifungal effect by downregulating AIF1. Journal of Fungi, 10(3), 213. https://doi.org/10.3390/jof10030213

Zhao, Y., Zhang, H., Liu, Y., Lan, Y., Zhu, J., Cai, Y., ... & Yang, Z. (2024). Evidence of strobilurin fungicides and their metabolites in Dongjiang River ecosystem, southern China: Bioaccumulation and ecological risks. Science of The Total Environment, 908, 168427. https://doi.org/10.1016/j.scitotenv.2023.168427