The progressive development of wireless communications worldwide, and the need for devices to be used simultaneously in different frequency bands to satisfy the services provided in them, has triggered research to find economical, simple solutions with the required quality. In this situation, microstrip antennas, due to their characteristics, are one of the most suitable options for achieving a solution. This paper proposes the design and simulation of a multiband antenna with circular polarization using a microstrip feed in the 1800 MHz and 2.4 GHz frequency bands. According to the research results, this antenna can be used for LTE cellular telephony in the 1800 MHz band 3 and WLAN applications such as Wi-Fi and Bluetooth in the 2.4 GHz band. The entire design, simulation, and optimization process were conducted in CST Studio Suite 2017 software.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Braasch, M. (1996). Multipath effects, in Global Positioning System: Theory and Applications.
Brookner, E., Hall W., and Westlake R. (1985). Faraday loss for L-band radar and communications systems. IEEE Transactions on Aerospace and Electronic Systems, Vol 21, No 4, pp. 459–469, https://doi.org/10.1109/TAES.1985.310634
Collazo, C. (2020). Diseño de antena reconfigurable en frecuencia para aplicaciones Wifi, Bluetooth y localización de dispositivos en la banda civil [Tesis de Grado, Universidad Tecnológica de La Habana. Facultad de Telecomunicaciones y Electrónica, Departamento de Comunicaciones Inalámbricas].
Balanis, C (2016), Antenna Theory Analysis And Design, Fourth Edition. John Wiley & Sons. https://www.wiley.com/en-us/Antenna+Theory%3A+Analysis+and+Design%2C+4th+Edition-p9781118642061
Counselman, C. (1999). Multipath rejecting GPS antennas. Proceedings of the IEEE, Vol 87, No 1, pp. 86-91, https://doi.org/10.1109/5.736343
CST STUDIO SUITE® (2021). https://www.3ds.com.
Cabrera, A y Paz, N. (2018). Antena de Microcinta Doble Banda con Polarización Circular para Aplicaciones WLAN. [Tesis de Grado, Universidad Tecnológica de La Habana. Facultad de Telecomunicaciones y Electrónica, Departamento de Comunicaciones Inalámbricas].
Davies, K. (1965). Ionospheric Radio Propagation, NBS Monograph 80, 181, US Government Printing Office, Washington DC. https://nvlpubs.nist.gov/nistpubs/Legacy/MONO/nbsmonograph80.pdf
Doust, E., Hemmati, V. and Wight, J. (2008). An aperture-coupled circularly polarized stacked microstrip antenna for GPS frequency bands L1, L2, and L5. IEEE Antennas and Propagation Society International Symposium, pp: 1-4, https://doi.org/10.1109/APS.2008.461944020
Carrazana, G. (2019). Diseño de una antena reconfigurable en frecuencia para operar en las bandas de servicios WiFi de 2.4GHz y 5GHz. [Tesis de Grado, Universidad Tecnológica de La Habana. Facultad de Telecomunicaciones y Electrónica, Departamento de Comunicaciones Inalámbricas].
Liu H., et al. (2014). A multibroadband planar antenna for GSM/UMTS/LTE and WLAN/WiMAX handsets, IEEE Transactions on Antennas and Propagation, Vol 62, No 5, pp 2856–2860, https://doi.org/10.1109/TAP.2014.2308525
Heidari, A., Heyrani, M., y Nakhkash, M. (2009). A dual-band circularly polarized stub loaded microstrip patch antenna for GPS applications, Progress In Electromagnetics Research, Vol. 92, pp. 195–208, https://doi.org/10.2528/PIER09032401
High Frequency Circuit Materials (2021). RT/duroid ® 5880 Glass Microfiber Reinforced Polytetrafluoroethylene Composite Rogers Corporation Microwave Materials Division. ISO 9002 CERTIFIED http://www.rogerscorp.com/media/project/rogerscorp/documents/advanced-electronics-solutions/english/data-sheets/rt-duroid-5870-5880-data-sheet.pdf.
García, H. y Núñez, J. (2017). Arreglo de antenas de microcinta con polarización circular para la banda de 60 GHz. [Tesis de Grado, Universidad Tecnológica de La Habana. Facultad de Telecomunicaciones y Electrónica, Departamento de Comunicaciones Inalámbricas].
Guerra, M. (2020). Sistemas de Alimentación para 5G. [Tesis de Grado, Universidad Tecnológica de La Habana. Facultad de Telecomunicaciones y Electrónica, Departamento de Comunicaciones Inalámbricas].
Oulhaj, O., Touhami, N., Aghoutane, M. y Tazon, A. (2016). A miniature microstrip patch antenna array with defected ground structure. International Journal of Microwave and Optical Technology, Vol. 11, No. 1, pp. 32-39. htpps://www.researchgate.net/publication/298045954_A_miniature_microstrip_patch_antenna_array_with_defected_ground_structure
Kumar, P. and Masa-Campos, J. (2017). A novel dual polarized waveguide fed circular patch antenna for Ku band applications. Microwave and Optical Technology Letters, Vol. 59, pp. 1743-1750, https://doi.org/10.1002/mop.30622
Kumar, P. and Bisht, N. (2011). Stacked coupled circular microstrip patch antenna for dual band. Applications. Proceeding of Progress in Electromagnetics Research Symposium, pp. 629-632. https://www.researchgate.net/publication/266346102_Stacked_Coupled_Circular_Microstrip_Patch_Antenna_for_Dual_Band_Applications_PIERS_Proceedings_pp_629-632_Sept_2011
Kumar, P. (2014). Computation of resonant frequency of gap-coupled ring microstrip antennas. International Journal of Automation and Computing, Vol. 11, No. 6, pp. 671-675. https://link.springer.com/content/pdf/10.1007/s11633-014-0814-5.pdf
Kumar, P. (2017). Design of low cross-polarized patch antenna for ultra-wideband applications. International Journal on Antenna Communications and Propagation, Vol. 7, No.4, pp. 265-270. https://doi.org/10.15866/irecap.v7i4.10435
Garg, R., Bhartia, P., Bahl, I. y Ittipiboon, A. (2000). Microstrip Antenna Design Handbook. Artech House Publishers. https://books.google.fr/books?id=_er1LO5pEnUC
Varma, R., Ghosh, J. y Bhattacharya, R. (2017). A compact dual frequency double U‐slot rectangular microstrip patch antenna for WiFi/WiMAX. Microwave and Optical Technology Letters, Vol. 59, pp. 2174-2179. https://doi.org/10.1002/mop.30705
Singh, A., Aneesh, M., Ansari, J. (2015) Slots and notches loaded microstrip patch antenna for wireless communication. TELKOMNIKA Indonesian Journal of Electrical Engineering, Vol. 13, No. 3, pp. 584-594. https://doi.org/10.11591/telkomnika.v13i3.7282
Steven (Shichang) Gao, Q. L., Fuguo Zhu. (2014). Circularly Polarized Antennas. John Wiley & Sons. https://ieeexplore.ieee.org/book/6670809
Toh, B., Cahill, R. y Fusco V.(2003). Understanding and measuring circular polarization, IEEE Transactions on Education, Vol. 46, No. 3 pp. 313–318. https://doi.org/10.1109/TE.2003.813519

