Implementation of the K-means algorithm for clustering of EEG signals during the application of a Stroop test

Paul Cardenas Delgado
Daniela Prado
Bruno Iglesias
Ronnie Urdiales
Marcos Orellana
Priscila Cedillo Orellana
Abstract

Data analysis and model generation through machine learning (Machine Learning - ML) is one of the techniques most used by the scientific community to obtain knowledge that cannot be interpreted or analyzed with the naked eye. In this document, the specific issue of data collection, processing, and modeling is addressed using clustering techniques, specifically the K-Means algorithm. The data were obtained through a brain-computer interface (ICC - BCI) tool based on electroencephalogram (EEG), while a test subject performed a Stroop-type task, which allows psychologists to evaluate people's inhibitory control. The application of this type of algorithm in this specific area seeks to identify patterns within the EEG signals related to the subject's state. Data capture was carried out at three different hours of the day, morning, evening, and night, for two consecutive days, to obtain variability in the data. Although the data sample is small, it will serve as a starting point for analyzing the K-means algorithm in EEG signals during the execution of the Stroop test. The results obtained are shown both from a technical and psychological point of view. It can be seen in the clustering carried out with the signals in the time domain that there is a clustering pattern according to the time of day in which the test was performed. On the other hand, this pattern is not so evident for the clustering with the signals in the frequency domain. From the psychological perspective, it is found that the learning and accommodation process at the time of performing a psychological test decreases its potential.

DOWNLOADS
Download data is not yet available.
How to Cite
Cardenas Delgado, P., Prado, D., Iglesias, B., Urdiales, R., Orellana, M., & Cedillo Orellana, I. P. (2021). Implementation of the K-means algorithm for clustering of EEG signals during the application of a Stroop test. Revista Tecnológica - ESPOL, 33(2), 172-188. https://doi.org/10.37815/rte.v33n2.847

References

Al-Nafjan, A., Hosny, M., Al-Ohali, Y., & Al-Wabil, A. (2017). Review and Classification of Emotion Recognition Based on EEG Brain-Computer Interface System Research: A Systematic Review. Applied Sciences, 7(12), 1239. https://doi.org/10.3390/app7121239

Alqurashi, T., & Wang, W. (2019). Clustering ensemble method. International Journal of Machine Learning and Cybernetics, 10(6). https://doi.org/10.1007/s13042-017-0756-7

Ayodele, T. O. (2010). Types of Machine Learning Algorithms. New Advances in Machine Learning.

Basili, V. R., Caldiera, G., & Rombach, H. D. (1994). The goal question metric approach. Encyclopedia of Software Engineering, 2, 528-532. https://doi.org/10.1.1.104.8626

Ben-Israel, D., Jacobs, W. B., Casha, S., Lang, S., Ryu, W. H. A., de Lotbiniere-Bassett, M., & Cadotte, D. W. (2020). The impact of machine learning on patient care: A systematic review. En Artificial Intelligence in Medicine (Vol. 103, p. 101785). Elsevier B.V. https://doi.org/10.1016/j.artmed.2019.101785

Carvalho, T. P., Soares, F. A. A. M. N., Vita, R., Francisco, R. da P., Basto, J. P., & Alcalá, S. G. S. (2019). A systematic literature review of machine learning methods applied to predictive maintenance. Computers and Industrial Engineering, 137, 106024. https://doi.org/10.1016/j.cie.2019.106024

Emerenziani, G. Pietro, Vaccaro, M. G., Izzo, G., Greco, F., Rotundo, L., Lacava, R., Vignera, S. La, Calogero, A. E., Lenzi, A., & Aversa, A. (2020). Prediction equation for estimating cognitive function using physical fitness parameters in older adults. PLoS ONE, 15(5). https://doi.org/10.1371/journal.pone.0232894

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). The KDD Process for Extracting Useful Knowledge from Volumes of Data. Communications of the ACM, 39(11), 27-34. https://dl.acm.org/doi/pdf/10.1145/240455.240464?casa_token=M2LKOwDtBmcAAAAA:Z_JvN1QHtQAdj4px-cISHRwZqwmFjrFq8cekNwgeEzMrYdMA7RPpimsq6Hxv5cwE_FqOMazrc4QPVw

Likas, A., Vlassis, N., & J. Verbeek, J. (2003). The global k-means clustering algorithm. Pattern Recognition, 36(2). https://doi.org/10.1016/S0031-3203(02)00060-2

MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin. https://doi.org/10.1037//0033-2909.109.2.163

Medina, B., Sierra, J. E., & Ulloa, A. B. (2018). Técnicas de extracción de características de señales EEG en la imaginación de movimiento para sistemas BCI Extraction techniques of EEG signals characteristics in motion imagination for BCI systems. Espacios, 39(22).

Montañés, P., & de Brigard, F. (2011). Neuropsicología clínica y cognoscitiva. Centro Editorial, Facultad de Ciencias Humanas. https://books.google.com.ec/books?id=-xW_DwAAQBAJ&printsec=frontcover&dq=neuropsicología+clinica&hl=es&sa=X&redir_esc=y#v=onepage&q=neuropsicología clinica&f=false

Nasteski, V. (2017). An overview of the supervised machine learning methods. HORIZONS.B, 4. https://doi.org/10.20544/horizons.b.04.1.17.p05

Onwuegbuzie, A., & Leech, N. (2005). On becoming a pragmatic researcher: The importance of combining quantitative and qualitative research methodologies. En International Journal of Social Research Methodology: Theory and Practice (Vol. 8, Número 5, pp. 375-387). Routledge . https://doi.org/10.1080/13645570500402447

Peña Barrientos, M. C., Gómez Mazo, T., Mejía Rúa, D., Hernández, J., & Tamayo Lopera, D. (2017). Caracterización del control inhibitorio en adolescentes del grado once de la Institución Educativa Normal Superior de Envigado-Colombia. Psicoespacios, 11(18). https://doi.org/10.25057/21452776.906

Popov, T., Westner, B. U., Silton, R. L., Sass, S. M., Spielberg, J. M., Rockstroh, B., Heller, W., & Miller, G. A. (2018). Time course of brain network reconfiguration supporting inhibitory control. Journal of Neuroscience, 38(18). https://doi.org/10.1523/JNEUROSCI.2639-17.2018

Priya, A., Garg, S., & Tigga, N. P. (2020). Predicting Anxiety, Depression and Stress in Modern Life using Machine Learning Algorithms. Procedia Computer Science, 167. https://doi.org/10.1016/j.procs.2020.03.442

Rennie, J. P., Zhang, M., Hawkins, E., Bathelt, J., & Astle, D. E. (2020). Mapping differential responses to cognitive training using machine learning. Developmental Science, 23(4). https://doi.org/10.1111/desc.12868

Runeson, P., Höst, M., Rainer, A., & Regnell, B. (2012). Case Study Research in Software Engineering: Guidelines and Examples. En Case Study Research in Software Engineering: Guidelines and Examples. https://doi.org/10.1002/9781118181034

Rusell, S., & Norvig, P. (2004). Inteligencia Artificial. Un Enfoque Moderno. En D. F. Aragón; (Ed.), Inteligencia Artificial (Segunda).

Scarpina, F., & Tagini, S. (2017). The stroop color and word test. En Frontiers in Psychology (Vol. 8, Número APR). https://doi.org/10.3389/fpsyg.2017.00557

Shani, R., Tal, S., Zilcha-Mano, S., & Okon-Singer, H. (2019). Can Machine Learning Approaches Lead Toward Personalized Cognitive Training? Frontiers in Behavioral Neuroscience, 13, 64. https://doi.org/10.3389/fnbeh.2019.00064

Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643-662. https://doi.org/10.1037/h0054651

Stroop, J. R. (1992). Stroop 1933.Pdf. En Journal of Experimental Psychology: General (Vol. 121, pp. 15-23).

Suryotrisongko, H., & Samopa, F. (2015). Evaluating OpenBCI Spiderclaw V1 Headwear’s Electrodes Placements for Brain-Computer Interface (BCI) Motor Imagery Application. Procedia Computer Science, 72. https://doi.org/10.1016/j.procs.2015.12.155

Trápaga, C., Pelayo, H., Sánchez, I., Bello, Z., & Bautista, A. (2018). De la psicología cognitiva a la neuropsicología (G. Moreno (ed.)). El Manual Moderno. https://books.google.com.ec/books?id=_T52zQEACAAJ&dq=psicología+cognitiva&hl=es&sa=X&redir_esc=y

Wang, M., Zhang, S., Lv, Y., & Lu, H. (2018). Anxiety Level Detection Using BCI of Miner’s Smart Helmet. Mobile Networks and Applications, 23(2). https://doi.org/10.1007/s11036-017-0935-5

Xin, J. (2011). K-Means Clustering. Encyclopedia of Machine Learning, 563-564. https://doi.org/10.1007/978-0-387-30164-8_425

S. Kaneta, I. Wakabayashi and T. Kawahara, "Feasibility of BMI improvement applying a Stroop effect," 2016 18th International Conference on Advanced Communication Technology (ICACT), 2016, pp. 681-684, doi: 10.1109/ICACT.2016.7423518.

X. Hou, Y. Liu, O. Sourina, Y. R. E. Tan, L. Wang and W. Mueller-Wittig, "EEG Based Stress Monitoring," 2015 IEEE International Conference on Systems, Man, and Cybernetics, 2015, pp. 3110-3115, doi: 10.1109/SMC.2015.540.

Lim, Alfred & Chia, Wai. (2015). Analysis of Single-Electrode EEG Rhythms Using MATLAB to Elicit Correlation with Cognitive Stress. International Journal of Computer Theory and Engineering. 7. 149-155. 10.7763/IJCTE.2015.V7.947.

Elorriaga, Sergio. (2017). Estandarización Mexicana del Test Stroop: Datos Normativos.