Nowadays, and more with the pandemic, e-commerce is becoming the predominant way of marketing products and services in the world. A study conducted by the Ecuadorian Chamber of Electronic Commerce in 2020 shows that purchases and sales through digital channels has increased at least 15 times since the beginning of the pandemic. Therefore, to conduct market research companies must seek new ways to extract information and then then carry out its analysis and thus obtain competitive advantage. Data extraction is a complex and not very scalable process; therefore, this research presents a methodology for the extraction of information from a given industrial sector. The methodology consists of two fundamental steps, first, a ranking of the main sources of information available and most used in the country in a given industry sector is made, several characteristics and expert opinion are considered. Second, a platform is proposed that integrates the best ranked information sources and performs data extraction. Finally, these data are presented in a Dashboard with the availability to be downloaded and used in subsequent studies It is concluded that the 4 platforms that offer the greatest benefit for this research are: Google Trends, Facebook, YouTube and Twitter. There are also sources of information that have a high rating when applying the proposed analysis, however, data extraction is difficult due to their security policies.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Aakash, & Aggarwal, A. G. (2020). An Analysis of EWOM Text that Contribute to EWOM Helpfulness. In Lecture Notes in Electrical Engineering (Vol. 601, pp. 893–900). Springer. https://doi.org/10.1007/978-981-15-1420-3_97
Acker, A., & Kreisberg, A. (2020). Social media data archives in an API-driven world. Archival Science, 20(2), 105–123. https://doi.org/10.1007/s10502-019-09325-9
Amarouche, K., Benbrahim, H., & Kassou, I. (2015). Product Opinion Mining for Competitive Intelligence. Procedia Computer Science, 73, 358–365. https://doi.org/10.1016/j.procs.2015.12.004
Árcos;Valverde, D. A. (2016). “Incidencia del uso de redes sociales aplicado en las estrategias de marketing en el sector textil de la ciudad de guayaquil año 2016.” http://dspace.ups.edu.ec/handle/123456789/14886
Avila Fuentes, L. F. (2019). ARTICULO CIENTÍFICO: Comercialización de productos mediante el uso de herramientas de comercio electrónico y su incidencia en las PYMES del sector textil de Atuntaqui provincia de Imbabura. http://181.39.139.68:8080/handle/123456789/249
Barrientos Felipa, P. (2017). Marketing + internet = e-commerce: oportunidades y desafíos. Revista Finanzas y Política Económica, 9(1), 41–56. https://doi.org/10.14718/revfinanzpolitecon.2017.9.1.3
Diaz Agila, Y. M. (2018). “Análisis De Las Estrategias De Marketing Digital Aplicadas Por Las Microempresas En El Sector Textil De La Provincia De Pichincha.” http://dspace.ups.edu.ec/handle/123456789/15305
E-commerce. (2020). DC0-Información pública E-Commerce en Ecuador. https://www.pwc.ec/es/publicaciones/assets/e-commerce-ecuador.pdf
Ecommerceday. (2017). Estudio de Comercio Electrónico en el País durante el eCommerce Day Ecuador 2017. 2–4. http://www.ecommerceday.ec/2018/2017/11/09/se-presento-el-primer-estudio-de-comercio-electronico-en-el-pais-durante-el-ecommerce-day-ecuador-2017/
Karen Lucero. (2021, May 2). El sector textil, un puntal de la industria que busca levantarse | Gestión. Economia y Finanzas. https://www.revistagestion.ec/economia-y-finanzas-analisis/el-sector-textil-un-puntal-de-la-industria-que-busca-levantarse
Kim, Y., Dwivedi, R., Zhang, J., & Jeong, S. R. (2016). Competitive intelligence in social media Twitter: IPhone 6 vs. Galaxy S5. Online Information Review, 40(1), 42–61. https://doi.org/10.1108/OIR-03-2015-0068
Lomborg, S., & Bechmann, A. (2014). Using APIs for Data Collection on Social Media. Information Society, 30(4), 256–265. https://doi.org/10.1080/01972243.2014.915276
Muñoz Bustos, D. A. (2019). Sistema organizacional aplicado al marketing digital en el sector textil de ropa interior de la provincia de Tungurahua. https://repositorio.uta.edu.ec:8443/jspui/handle/123456789/29960
Neira, D. A. (2017). Las redes sociales y la confianza del consumidor como factores en la intención de compra a través de canales de comercio electrónico en el sector moda colombiano. https://repositorio.unal.edu.co/handle/unal/60094
Nguyen, S., Ngo, B., Vo, C., & Cao, T. (2019). Hot Topic Detection on Twitter Data Streams with Incremental Clustering Using Named Entities and Central Centroids. 2019 IEEE-RIVF International Conference on Computing and Communication Technologies (RIVF), 1–6. https://doi.org/10.1109/RIVF.2019.8713730
Perriam, J., Birkbak, A., & Freeman, A. (2020). Digital methods in a post-API environment. International Journal of Social Research Methodology, 23(3), 277–290. https://doi.org/10.1080/13645579.2019.1682840
Tripathi, G., & S, N. (2015). Feature Selection and Classification Approach for Sentiment Analysis. Machine Learning and Applications: An International Journal, 2(2), 01–16. https://doi.org/10.5121/mlaij.2015.2201
Xue, Y., Zhou, Y., & Dasgupta, S. (2018). Mining competitive intelligence from social media: A case study of IBM. Proceedings of the 22nd Pacific Asia Conference on Information Systems - Opportunities and Challenges for the Digitized Society: Are We Ready?, PACIS 2018. https://pennstate.pure.elsevier.com/en/publications/mining-competitive-intelligence-from-social-media-a-case-study-of
Yánes González, R. M. (2017). “Marketing digital para el sector textil de la provincia de Tungurahua: Caso Andelas CIA. LTDA. [Universidad Técnica de Ambato. Facultad de Ciencias Administrativas. Carrera de Marketing y Gestión de Negocios.]. https://repositorio.uta.edu.ec:8443/jspui/handle/123456789/26922