Ensuring the uninterrupted operation of Supervisory Control and Data Acquisition (SCADA) systems is critical for industrial environments that rely on continuous monitoring and control of equipment. However, in the Microgrid Laboratory at the University of Cuenca, routine maintenance procedures have revealed a significant vulnerability: the SCADA system temporarily loses communication and control capabilities when some of the devices are powered down, resulting in forced system downtime. This paper investigates practical strategies to enhance SCADA system availability by addressing this critical limitation. Three hypotheses were explored: first, an issue in network redundancy management; second, with disconnecting of a device from the fiber-optic ring network; and third, programming errors within the LabVIEW-developed SCADA application. Experimental results demonstrated that these approaches, particularly the software-level improvements in LabVIEW, successfully maintained system control and communication during maintenance. The proposed solutions offer a scalable and cost-effective pathway to increase the resilience of SCADA systems in microgrid environments.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Centralización y análisis de eventos de seguridad con Graylog. (n.d.). Retrieved June 23, 2025, from https://openaccess.uoc.edu/items/1f2bc757-1b7e-43d3-8776-cc9a343964c1
Chica Gallardo, A. P., & Guamán Argudo, J. A. (2017). Modelo de estado estacionario de la microrred del laboratorio de Balzay de la Universidad de Cuenca [bachelorThesis]. https://dspace.ucuenca.edu.ec/handle/123456789/28606
Daneels, A., & Salter, W. (1999). What is SCADA? Proceedings of the 7th International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS ’99). Trieste, Italia: International Conference on Accelerator and Large Experimental Physics Control Systems. https://cds.cern.ch/record/532624/files/mc1i01.pdf
Guachichullca Guamán, B. A. (2024). Diseño e implementación de una Arquitectura de Ciberseguridad para la Micro-red de la Universidad de Cuenca [Tesis de pregrado, Universidad de Cuenca]. Repositorio Institucional de la Universidad de Cuenca. https://dspace.ucuenca.edu.ec/handle/123456789/44828
Laboratorio De Microrred. (n.d.). Retrieved June 22, 2025, from https://www2.ucuenca.edu.ec/ingenieria/laboratorios/lab-microrred
Loayza, E. G. (2010). Desarrollo de una guía práctica para la medición del tráfico de red IP y monitoreo de dispositivos en tiempo real mediante herramientas MRTG y PRTG. Pontificia Universidad Católica del Ecuador. http://repositorio.puce.edu.ec/bitstream/handle/22000/3421/T-PUCE-3575.pdf?sequence=1&isAllowed=y
Montesdeoca Chuva, D. I., & Buñay Moncayo, D. E. (2021). Creación de sistemas SCADA para el laboratorio de microred de la Universidad de Cuenca bajo el enfoque de desarrollo dirigido por modelos [Tesis de pregrado, Universidad de Cuenca]. Repositorio Institucional de la Universidad de Cuenca. http://dspace.ucuenca.edu.ec/handle/123456789/37333
Ujvarosi, A. (2016). Evolution of SCADA systems. Bulletin of the Transilvania University of Braşov. Series I: Engineering Sciences, 9(58) (1), 63-68.
Weidmüller. (2014). Industrial Ethernet managed switches: Manual for managed switches of series ValueLine and PremiumLine. https://manualzz.com/doc/6766188/manual-managed-weidm%C3%BCller-switches
Zhou, J., Liu, D., Ma, X., & Ye, C. (2009). Application of industry ethernet and configuration software in heating network monitoring system. 2009 WRI World Congress on Computer Science and Information Engineering, CSIE 2009, 131–134. https://doi.org/10.1109/CSIE.2009.439