The assignment of teachers to courses in higher education represents a critical challenge for academic management, as it directly impacts the quality of the teaching-learning process. Despite their continued use, manual assignment processes face evident challenges, such as subjectivity, lack of standardization, and a high administrative workload. In response to this scenario, this study proposes a recommender system that combines sentiment analysis, using locally adapted transformer-based language models (RoBERTuito), with mathematical optimization techniques, aiming to align teachers' competencies with specific academic requirements. To achieve this, enriched teacher profiles were developed based on historical evaluations, automatically classified student comments, and institutionally defined competencies within the framework of the Competency Pentagon. Additionally, dynamic weights were incorporated to adjust the relevance of pedagogical and technical factors according to the particularities of each academic cycle. The results obtained from the recommender system demonstrate a high correlation between generated recommendations and manual assignments, particularly in technically oriented degree programs. Moreover, program directors who participated in a pilot test positively evaluated the system, noting that it not only significantly reduces the operational workload but also establishes itself as a strategic tool with high potential for scalability and replicability across diverse educational contexts.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Bannan-Ritland, B. (2003). The role of design in research: The integrative learning design framework. Educational Researcher, 32(1), 21–24.https://doi.org/10.3102/0013189X032001021
Calle López, D. E., Cornejo Reyes, P. J., Pesantez Aviles, L. F., Rodas Tobar, M. I., Vasquez Vasquez, C. E., & Robles Bykbaev, V. E. (2018). Un sistema experto basado en minería de datos y programación entera lineal para soporte en la asignación de materias y diseño de horarios en educación superior. Enfoque UTE, 9(9), 102–117. https://doi.org/10.29019/enfoqueute.v9n1.226
Daqiqil, I. D., Saputra, H., Syamsudhuha, S., Kurniawan, R., & Andriyani, Y. (2024). Sentiment analysis of student evaluation feedback using transformer-based language models. Indonesian Journal of Electrical Engineering and Computer Science, 36(2), 1127–1139. https://doi.org/10.11591/ijeecs.v36.i2.pp1127-1139
Gonzalez-Gomez, L. J., Hernandez-Munoz, S. M., Borja, A., Azofeifa, J. D., Noguez, J., & Caratozzolo, P. (2024). Analyzing natural language processing techniques to extract meaningful information on skills acquisition from textual content. IEEE Access, 12, 139742–139757. https://doi.org/10.1109/ACCESS.2024.3465409
Hénard, F., & Le Prince-Ringuet, S. (2008, octubre). The path to quality teaching in higher education (OECD IMHE Programme report; pp. 1–50). Organización para la Cooperación y el Desarrollo Económicos. http://www.oecd.org/edu/imhe/44150246.pdf
Krugel, J., Hubwieser, P., Goedicke, M., Striewe, M., Talbot, M., & Olbricht, C. (2020). Automated measurement of competencies and generation of feedback in object-oriented programming courses. 2020 IEEE Global Engineering Education Conference (EDUCON), 1907–1914. https://doi.org/10.1109/EDUCON45650.2020.9125323
Maldonado-Mahauad, J., Lozano, D. M., & Pacheco, J. (2024). Sistema de recomendación de cursos en línea basado en el perfil de competencias TIC del docente. Revista Tecnológica-ESPOL, 36(E1), 196–214. https://doi.org/10.37815/rte.v36nE1.1201
Patfield, S. (2022). Towards quality teaching in higher education: Pedagogy-focused academic development for enhancing practice. International Journal for Academic Development, 27(4), 329–344. https://doi.org/10.1080/1360144X.2022.2103561
Perdomo-Charry, G., & Riascos-Erazo, S. (2008). El rol de la gestión del conocimiento en la gestión del talento humano. Revista Universidad y Empresa, 10(15), 111–131. https://dialnet.unirioja.es/servlet/articulo?codigo=6936999
Pérez, J. M., Furman, D. A., Alonso Alemany, L., & Luque, F. (2022). RoBERTuito: A pre-trained language model for social media text in Spanish. arXiv preprint arXiv:2111.09453. https://doi.org/10.48550/arXiv.2111.09453
Rico, R. L. A. (2019). Formación y evaluación docente basada en un perfil por competencias: Una propuesta desde la práctica reflexiva. Revista Educación, 43(2), 1–29. https://www.redalyc.org/articulo.oa?id=44058158022
Sahoo, A., Chanda, R., Das, N., & Sadhukhan, B. (2023). Comparative analysis of BERT models for sentiment analysis on Twitter data. In Proceedings of the 2023 9th International Conference on Smart Computing and Communications (ICSCC) (pp. 658–663). IEEE. https://doi.org/10.1109/ICSCC59169.2023.10335061
Shuqin, H., & Raga, R. C. (2024). A deep learning model for student sentiment analysis on course reviews. IEEE Access, 12, 136747–136758. https://doi.org/10.1109/ACCESS.2024.3463793
Song, C., Chen, S., Cai, X., & Chen, H. (2024). Sentiment Analysis of Spanish Political Party Communications on Twitter Using Pre-trained Language Models. arXiv preprint arXiv:2411.04862. https://doi.org/10.48550/arXiv.2411.04862
Szwarc, E., Wikarek, J., Gola, A., Bocewicz, G., & Banaszak, Z. (2020). Interactive planning of competency-driven university teaching staff allocation. Applied Sciences, 10(14), https://doi.org/10.3390/app10144894
Tabares-Ospina, H. A., Monsalve-Llano, D. A., & Diez-Gomez, D. (2013). Modelo de Sistema Experto para la Selección de Personal Docente Universitario. TecnoLógicas, (30), 51-70.
Universidad de Cuenca. (2022). Concursos de méritos y oposición. https://www.ucuenca.edu.ec/wp-content/uploads/2025/08/2.-RCE-CES.pdf