This study aims to characterize and analyze water quality in urban environments using an IoT embedded system, focusing on San Camilo’s community of Quevedo, Ecuador, where population growth has increased the demand for drinking water. An embedded system was designed to make use of a microcontroller and sensors to monitor critical water quality parameters in real time. The collected data is transmitted to a cloud platform for storage, analysis, and visualization. Spearman's correlation coefficient was preferred for statistical analysis of the data. This allowed for the identification of patterns and relationships between the variables examined. The data revealed significant associations in non-linear data, facilitating a decision regarding the development of predictive models for water management and treatment. The results demonstrate the feasibility and efficiency of using IoT technologies in the continuous monitoring of water quality, offering a scientific basis for the collection and processing of relevant data on the quality of drinking water in residential areas, providing a robust tool to monitor public health and the comfort of the inhabitants.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Acosta, S., Laines, B., & Piña, G. (16 de 04 de 2014). Repositiorio Academico UPC. Obtenido de https://repositorioacademico.upc.edu.pe/bitstream/handle/10757/316022/ma148_manual_2014_01.pdf?sequence=1&isAllowed=y
Arquero Gallego, J. (2022). Obtenido de https://oa.upm.es/71917/3/TFG_Juan_Arquero_Gallego.pdf
Candia, R., & Caiozzi, G. (17 de 09 de 2005). Revista médica de Chile. Obtenido de https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872005000900017
Carriazo, Y. (1 de 09 de 2021). Obtenido de https://repository.unab.edu.co/handle/20.500.12749/15481
Daquilema Serrano, Á. (21 de 08 de 2020). Espol. Obtenido de https://www.dspace.espol.edu.ec/handle/123456789/56408
Faraldo, P., & Pateiro, B. (16 de 06 de 2013). USC. Obtenido de http://eio.usc.es/eipc1/BASE/BASEMASTER/FORMULARIOS-PHP-DPTO/MATERIALES/Mat_G2021103104_EstadisticaTema1.pdf
FasterCapital. (5 de 04 de 2024). FasterCapital. Obtenido de https://fastercapital.com/es/contenido/Desviacion-estandar--como-calcularla-e-interpretarla.html
Francisco, J. (30 de 04 de 2020). Obtenido de https://cifpn1.com/electronica/?p=6402
GAD Quevedo. (16 de 06 de 2020). Gobierno autonomo decentralizado municipal de Quevedo. Obtenido de https://quevedo.gob.ec/plan-desarrollo-y-ordenamiento-territorial-2019-2023/
Guevara, L., & Suntaxi, H. (18 de 10 de 2020). ESPE. Obtenido de http://repositorio.espe.edu.ec/bitstream/21000/23414/1/T-ESPE-044191.pdf
hiru. (25 de 6 de 2024). Obtenido de https://www.hiru.eus/es/matematicas/medidas-de-tendencia-central
Jan, F., Min-Allah, N., & Dü¸stegör, M.-A. (14 de 01 de 2023). Obtenido de MPDI: https://www.mdpi.com/2073-4441/13/13/1729
Medina, F. (26 de 04 de 2024). Obtenido de https://portalacademico.cch.unam.mx/materiales/prof/matdidac/sitpro/exp/bio/guia-biologia3/Anexo_5.pdf
Menéndez, P. (21 de 06 de 2023). Ucrea. Obtenido de https://repositorio.unican.es/xmlui/handle/10902/30240
Molina, M. (10 de 06 de 2021). Obtenido de https://evidenciasenpediatria.es/files/41-13993-RUTA/25_Fund_Correlacion_v2.pdf
Muñoz, L. (2013). Ecorfan.
OMS. (24 de 04 de 2018). Obtenido de https://www.who.int/es/publications/i/item/9789241549950
OPS. (28 de 07 de 2008). Obtenido de https://www.paho.org/es/documentos/guia-para-vigilancia-control-calidad-agua-situaciones-emergencia-desastre
Roque, A. S. (16 de 08 de 2020). uaem. Obtenido de http://riaa.uaem.mx/xmlui/bitstream/handle/20.500.12055/1611/SERAQL08T.pdf?sequence=1
Semarnat. (14 de 02 de 2023). Semarnat. Obtenido de https://apps1.semarnat.gob.mx:8443/dgeia/informe18/index.html
Silvestre, S., Salazar, J., & Marzo, J. (01 de 2019). UPCommons. Obtenido de https://upcommons.upc.edu/handle/2117/190969
Teja, P. (8 de 9 de 2022). Obtenido de https://www.mr-beam.org/es/blogs/news/que-es-un-codigo-g

