Intelligent traffic signalization is a traffic control system designed to improve road safety and promote sustainable mobility. In this regard, an exhaustive literature review has examined the technologies, algorithms, and challenges associated with this system. For this purpose, 22 studies published between 2019 and 2023 were selected, following the PRISMA methodology along three phases: Planning, Implementation, and Documentation. The results highlight the implementation of technologies such as WI-FI and CCTV, which are predominantly used for connectivity and surveillance. In terms of algorithms, YOLO emerges as the most applied, addressing key challenges such as the need for stable connectivity and protection of data confidentiality. However, significant limitations are also identified, such as associated costs and social acceptance. Thus, it is inferred that technical innovations can counteract both the challenges and inherent limitations, therefore contributing to more efficient traffic management and life protection.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Aarón, M. A., Gómez, C. A., Fontalvo, J., Gómez, A. J., Aarón, M. A., Gómez, C. A., Fontalvo, J., & Gómez, A. J. (2019). Análisis de la Movilidad Vehicular en el Departamento de La Guajira usando Simulación. El Caso de Riohacha y Maicao. Información tecnológica, 30(1), 321-332. https://doi.org/10.4067/S0718-07642019000100321
Abohashima, H., Gheith, M., & Eltawil, A. (2020). A proposed IoT based Smart traffic lights control system within a V2X framework. 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), 338-343. https://doi.org/10.1109/NILES50944.2020.9257874
Aleko, D. R., & Djahel, S. (2020). An Efficient Adaptive Traffic Light Control System for Urban Road Traffic Congestion Reduction in Smart Cities. Information, 11(2), 119. https://doi.org/10.3390/info11020119
Aulia Yusuf, A. N., Setyo Arifin, A., & Yuli Zulkifli, F. (2021). Recent development of smart traffic lights. IAES International Journal of Artificial Intelligence (IJ-AI), 10(1), 224. https://doi.org/10.11591/ijai.v10.i1.pp224-233
Chabchoub, A., Hamouda, A., Al-Ahmadi, S., & Cherif, A. (2021). Intelligent Traffic Light Controller using Fuzzy Logic and Image Processing. International Journal of Advanced Computer Science and Applications, 12(4). https://doi.org/10.14569/IJACSA.2021.0120450
Dangi, K., Kushwaha, M. S., & Bakthula, R. (2020). An Intelligent Traffic Light Control System Based on Density of Traffic. En J. K. Mandal & D. Bhattacharya (Eds.), Emerging Technology in Modelling and Graphics (Vol. 937, pp. 741-752). Springer Singapore. https://doi.org/10.1007/978-981-13-7403-6_65
Evan, Wulandari, M., & Syamsudin, E. (2020). Recognition of Pedestrian Traffic Light using Tensorflow And SSD MobileNet V2. IOP Conference Series: Materials Science and Engineering, 1007(1), 012022. https://doi.org/10.1088/1757-899X/1007/1/012022
Faqir, N., En-Nahnahi, N., & Boumhidi, J. (2020). Deep Q-learning Approach for Congestion Problem In Smart Cities. 2020 Fourth International Conference On Intelligent Computing in Data Sciences (ICDS), 1-6. https://doi.org/10.1109/ICDS50568.2020.9268709
Gandhi, M. M., Solanki, D. S., Daptardar, R. S., & Baloorkar, N. S. (2020). Smart Control of Traffic Light Using Artificial Intelligence. 2020 5th IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE), 1-6. https://doi.org/10.1109/ICRAIE51050.2020.9358334
Guo, P., Xiang, H., Wu, S., Pu, T., & Chen, D. (2020). Design of Intelligent Pedestrian and Vehicle Guidance System for Zebra Crossing Based on Millimeter Wave Radar. Journal of Physics: Conference Series, 1646(1), 012125. https://doi.org/10.1088/1742-6596/1646/1/012125
Hiari, O., & Nofal, I. (2020). A Dynamic Decentralized Traffic Light Management System: A TCP Inspired Approach. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium, 1-4. https://doi.org/10.1109/NOMS47738.2020.9110461
Ibriaeva, O., Shepelev, V., Zhulev, A., Chizhova, M., Yakupova, G., & Fatikhova, L. (2020). The Use of the YOLO Neural Network in the Task of Separating Vehicles and Pedestrians at a Signal-Controlled Intersection. 2020 Global Smart Industry Conference (GloSIC), 303-308. https://doi.org/10.1109/GloSIC50886.2020.9267845
Jauregui, C., Torres, M., Silvera, M., & Campos, F. (2020). Improving people’s accessibility through a fully actuated signal control at intersections with high density of pedestrians. 2020 Congreso Internacional de Innovación y Tendencias En Ingeniería (CONIITI), 1-6. https://doi.org/10.1109/CONIITI51147.2020.9240288
Leon, E. R. W., & Ygnacio, M. A. C. (2024). Una revisión sistemática de literatura sobre implementaciones de sistemas de control de tráfico. Interfases, 019, Article 019. https://doi.org/10.26439/interfases2024.n19.6779
Mahima, K. T. Y., Abeygunawardana, R. A. B., & Ginige, T. N. D. S. (2020). Dynamic Traffic Light Controlling System Using Google Maps and IoT. 2020 From Innovation to Impact (FITI), 1-5. https://doi.org/10.1109/FITI52050.2020.9424870
Michelle, G. N. A., & Alberto, S. C. O. (s. f.). INGENIERO EN NETWORKING Y TELECOMUNICACIONES.
Nguyen-Ly, T. T., Tran, L., & Huynh, T. V. (2019). Low-cost, high-efficiency hardware implementation of smart traffic light system. 2019 International Symposium on Electrical and Electronics Engineering (ISEE), 28-32. https://doi.org/10.1109/ISEE2.2019.8921146
Palma, L. V. G., & García, L. C. (2023). Estudio bibliográfico de Sistemas de Transporte Inteligente orientado a los buses urbanos de la ciudad Portoviejo. Polo del Conocimiento, 8(5), Article 5. https://doi.org/10.23857/pc.v8i5.5633
Pérez, R. M., Arias, J. S., & Porras, A. M. (2019). Introducción al Aprendizaje Automático con YOLO. Tecnología Vital, 2(6), Article 6. https://revistas.ulatina.ac.cr/index.php/tecnologiavital/article/view/250
Ramadhan, Z. A., Salman, R. H., Mohammed, B. K., & Alwaily, A. H. (2021). Design and implement a smart traffic light controlled by internet of things. Periodicals of Engineering and Natural Sciences (PEN), 9(4), 542. https://doi.org/10.21533/pen.v9i4.2351
Rezgui, J., Barri, M., & Gayta, R. (2019). Smart Traffic Light Scheduling Algorithms. 2019 International Conference on Smart Applications, Communications and Networking (SmartNets), 1-7. https://doi.org/10.1109/SmartNets48225.2019.9069760
Rodríguez Romo, T. M., & Bravo León, J. A. (2021). IoT para la semaforización inteligente en la ciudad de Guayaquil. Polo del Conocimiento: Revista científico - profesional, 6(11), 1022-1039.
Saad, W. K., Hashim, Y., & Jabbar, W. A. (2020). Design and Implementation of Portable Smart Wireless Pedestrian Crossing Control System. IEEE Access, 8, 106109-106120. https://doi.org/10.1109/ACCESS.2020.3000014
Sharma, M., Bansal, A., Kashyap, V., Goyal, P., & Sheikh, T. H. (2021). Intelligent Traffic Light Control System Based On Traffic Environment Using Deep Learning. IOP Conference Series: Materials Science and Engineering, 1022(1), 012122. https://doi.org/10.1088/1757-899X/1022/1/012122
Singh, R., Saini, S., & Bathla, R. (2019). Autonomous Traffic Management using Big Data in a Network of IoT Enabled Devices. 2019 2nd International Conference on Power Energy, Environment and Intelligent Control (PEEIC), 33-37. https://doi.org/10.1109/PEEIC47157.2019.8976687
Sotiriadis, L., & Mamalis, B. (2020). A Hierarchical Fog-based Architecture for IoT-enabled Intelligent Traffic Lights System Services. 24th Pan-Hellenic Conference on Informatics, 127-130. https://doi.org/10.1145/3437120.3437290
Villagra, A., Alba, E., & Luque, G. (2020). A better understanding on traffic light scheduling: New cellular GAs and new in-depth analysis of solutions. Journal of Computational Science, 41, 101085. https://doi.org/10.1016/j.jocs.2020.101085
Zinchenko, V., Kondratenko, G., Sidenko, I., & Kondratenko, Y. (2020). Computer Vision in Control and Optimization of Road Traffic. 2020 IEEE Third International Conference on Data Stream Mining & Processing (DSMP), 249-254. https://doi.org/10.1109/DSMP47368.2020.9204329

