Early seismic events detection might reduce the number of people affected and save lives. In particular, the seismic activity in Ecuador is high, given its location along the zone named the Pacific Belt of Fire. In this context, this paper presents a solution to compare algorithms for detecting seismic events. This comparison was performed both concerning the functionality and the configuration of the parameters required for each algorithm. This solution was implemented on an SBC platform (Single Board Computer) to obtain a portable, scalable, economical, and low-cost computational tool. The methods compared were: Classic STA/LTA, Recursive STA/LTA, Delayed STA/LTA, Z Detector, Baer and Kradolfer picker, and AR-AIC (Autoregressive-Akaike-Information-Criterion-picker). For the evaluation and comparison, multiple experiments were carried out using real data provided by the Regional Seismological Network (RSA). In particular, such registers were used as input data to the seismic algorithms. Results revealed that the algorithm with the best performance was the Classic STA/LTA, since from the total number of real events (58), only one was not detected. In addition, 6 false negatives were obtained, achieving 98,2% of precision. Finally, the software used for the comparison of the algorithms has been released for free usage, which represents another contribution of this work in the context of seismic analysis.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Akram, J., Peter, D., & Eaton, D. (2018). A k-mean characteristic function to improve STA/LTA detection. Proceedings of the Geoconvention, Calgary, AB, Canada, 7-11.
Armijos, A. (2021). Alvaroarmijos/RSADE [Python]. https://github.com/alvaroarmijos/RSADE (Original work published 2020)
Baer, M., & Kradolfer, U. (1987). An automatic phase picker for local and teleseismic events. Bulletin of the Seismological Society of America, 77(4), 1437-1445.
Baraschino, R., Baltzopoulos, G., & Iervolino, I. (2020). R2R-EU: Software for fragility fitting and evaluation of estimation uncertainty in seismic risk analysis. Soil Dynamics and Earthquake Engineering, 132, 106093. https://doi.org/10.1016/j.soildyn.2020.106093
Beauval, C., Yepes, H., Bakun, W. H., Egred, J., Alvarado, A., & Singaucho, J.-C. (2010). Locations and magnitudes of historical earthquakes in the Sierra of Ecuador (1587–1996). Geophysical Journal International, 181(3), 1613-1633.
Beauval, C., Yepes, H., Palacios, P., Segovia, M., Alvarado, A., Font, Y., Aguilar, J., Troncoso, L., & Vaca, S. (2013). An earthquake catalog for seismic hazard assessment in Ecuador. Bulletin of the Seismological Society of America, 103(2A), 773-786.
Bueno, A., Zuccarello, L., Díaz-Moreno, A., Woollam, J., Titos, M., Benítez, C., Álvarez, I., Prudencio, J., & De Angelis, S. (2020). PICOSS: Python Interface for the Classification of Seismic Signals. Computers & Geosciences, 142, 104531. https://doi.org/10.1016/j.cageo.2020.104531
Chamberlain, C. J., & Townend, J. (2018). Detecting real earthquakes using artificial earthquakes: On the use of synthetic waveforms in matched‐filter earthquake detection. Geophysical Research Letters, 45(21), 11,641-11,649.
Choubik, Y., Mahmoudi, A., Himmi, M. M., & El Moudnib, L. (2020). STA/LTA trigger algorithm implementation on a seismological dataset using Hadoop MapReduce. IAES International Journal of Artificial Intelligence, 9(2), 269.
Eguez, A., Alvarado, A., Yepes, H., Machette, M. N., Costa, C., Dart, R. L., & Bradley, L. A. (2003). Database and map of Quaternary faults and folds of Ecuador and its offshore regions. US Geological Survey Open-File Report, 3, 289.
Elkady, A., & Lignos, D. G. (2020). EaRL—Software for Earthquake Risk, Loss and Lifecycle Analysis. SoftwareX, 12, 100607. https://doi.org/10.1016/j.softx.2020.100607
Ghorbani, S., Barari, M., & Hoseini, M. (2018). Presenting a new method to improve the detection of micro-seismic events. Environmental monitoring and assessment, 190(8), 1-13.
Jiménez, J., Cabrera, J., Sánchez, J., & Avilés, F. (2018). Vulnerabilidad sísmica del patrimonio edificado del Centro Histórico de la Ciudad de Cuenca: Lineamientos generales y avances del proyecto. Maskana, 9(1), 59-78.
Jones, J. P., & van der Baan, M. (2015). Adaptive STA–LTA with outlier statistics. Bulletin of the Seismological Society of America, 105(3), 1606-1618.
Küperkoch, L., Meier, T., & Diehl, T. (2012). Automated event and phase identification. En New Manual of Seismological Observatory Practice 2 (NMSOP-2) (pp. 1-52). Deutsches GeoForschungsZentrum GFZ.
Lara-Cueva, R. A., Benítez, D. S., Carrera, E. V., Ruiz, M., & Rojo-Álvarez, J. L. (2016). Automatic recognition of long period events from volcano tectonic earthquakes at cotopaxi volcano. IEEE Transactions on Geoscience and Remote Sensing, 54(9), 5247-5257.
Liu, H., & Zhang, J. Z. (2014). STA/LTA algorithm analysis and improvement of Microseismic signal automatic detection. Progress in Geophysics, 29(4), 1708-1714.
Mosher, S. G., & Audet, P. (2020). Automatic Detection and Location of Seismic Events From Time‐Delay Projection Mapping and Neural Network Classification. Journal of Geophysical Research: Solid Earth, 125(10), e2020JB019426.
Narvekar, N. (2018). Distinguishing earthquakes and noise using random forest algorithm. Master’s Projects. https://doi.org/10.31979/etd.6kxb-c9tu
Obspy. 12. Trigger/Picker Tutorial—ObsPy Documentation (1.2.0). (2021). Recuperado de https://docs.obspy.org/tutorial/code_snippets/trigger_tutorial.html
Otero, D. Z. (2018). ONDAS SÍSMICAS, su importancia para la geofísica y la humanidad. Universidad Industrial de Santander, 3(4).
Reynen, A., & Audet, P. (2017). Supervised machine learning on a network scale: Application to seismic event classification and detection. Geophysical Journal International, 210(3), 1394-1409.
Rojas, O., Otero, B., Alvarado, L., Mus, S., & Tous, R. (2019). Artificial neural networks as emerging tools for earthquake detection. Computación y Sistemas, 23(2), 335-350.
Romero, J. E., Titos, M., Bueno, Á., Álvarez, I., García, L., Torre, Á. de la, & Benítez, M. C. (2016). APASVO: A free software tool for automatic P-phase picking and event detection in seismic traces. Computers & Geosciences, 90, 213-220. https://doi.org/10.1016/j.cageo.2016.02.004
Sánchez, D., Howard, R., & Tobón, G. (2016). Trabajo 2 ONDAS SISMICAS. Recuperado 28 de agosto de 2021, de https://www.academia.edu/24984185/Trabajo_2_ONDAS_SISMICAS
Sevilla Echeverría, I. (2019). Improving automatic earthquake detection in the Krafla seismic network [Thesis]. https://skemman.is/handle/1946/34507
Sharma, B. K., Kumar, A., & Murthy, V. M. (2010). Evaluation of seismic events detection algorithms. Journal of the Geological Society of India, 75(3), 533-538.
Sleeman, R., & Van Eck, T. (1999). Robust automatic P-phase picking: An on-line implementation in the analysis of broadband seismogram recordings. Physics of the earth and planetary interiors, 113(1-4), 265-275.
Toledo Peña, P. A. (2014). Algoritmo de detección de ondas P invariante de escala: Caso de réplicas del sismo del 11 de marzo de 2010. http://repositorio.uchile.cl/handle/2250/131361
Trnkoczy, A. (2009). Understanding and parameter setting of STA/LTA trigger algorithm. En New Manual of Seismological Observatory Practice (NMSOP) (pp. 1-20). Deutsches GeoForschungsZentrum GFZ.
Vaezi, Y., & Van der Baan, M. (2015). Comparison of the STA/LTA and power spectral density methods for microseismic event detection. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 203(3), 1896-1908.
Zhang, J., Tang, Y., & Li, H. (2018). STA/LTA Fractal Dimension Algorithm of Detecting the P‐Wave ArrivalSTA/LTA Fractal Dimension Algorithm of Detecting the P‐Wave Arrival. Bulletin of the Seismological Society of America, 108(1), 230-237.
Zhu, L., Peng, Z., McClellan, J., Li, C., Yao, D., Li, Z., & Fang, L. (2019). Deep learning for seismic phase detection and picking in the aftershock zone of 2008 Mw7. 9 Wenchuan Earthquake. Physics of the Earth and Planetary Interiors, 293, 106261.