Currently, according to the Cisco Annual Internet Report, between 80% and 85% of internet data traffic is generated by video content, making it imperative to develop methods or algorithms that enable the efficient transmission of multimedia content over the network. In this context, this article proposes an optimized algorithm for video traffic control in an SDN environment, allowing for adaptive real-time transmission. The methodology consists of the following stages: first, the video is transmitted at a minimum encoded bitrate; then, the available network bandwidth is measured, based on which the encoding rate and video quality are adjusted; and finally, the video is played on the client side. The results obtained using the control algorithm were compared with those obtained using common routing protocols such as RIP (Routing Information Protocol) and OSPF (Open Shortest Path First). The use of the control algorithm resulted in an 18.1% lower delay compared to RIP and a 94.8% lower delay compared to OSPF. Under background traffic conditions, SDN demonstrated a 27.23% lower delay than RIP and a 54.1% lower delay than OSPF. The main contribution of this work is, through the implementation of a testbed, the analysis of a mechanism that improves quality of service (QoS) and quality of experience (QoE) by optimizing real-time video transmission through the selection of the best route and/or the dynamic adjustment of video bitrate according to network conditions.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Abar, T., Ben Letaifa, A., & El Asmi, S. (2021). Chapter five - user behavior-ensemble learning based improving qoe fairness in http adaptive streaming over sdn approach. In A. R. Hurson (Ed.), (Vol. 123, pp. 245-269). Elsevier. Recuperado a partir de https://www.sciencedirect.com/science/article/pii/S0065245821000292
Abuteir, R. M., Fladenmuller, A., & Fourmaux, O. (2016). An sdn approach to adaptive video streaming in wireless home networks. 2016 International Wireless Communications and Mobile Computing Conference (IWCMC), 321-326. Recuperado a partir de https://api.semanticscholar.org/CorpusID:12044836
Banchuen, T., Kawila, K., & Rojviboonchai, K. (2018). An sdn framework for video conference in inter-domain network. 2018 20th International Conference on Advanced Communication Technology (ICACT), 600-605. Recuperado a partir de https://api.semanticscholar.org/CorpusID:4370122
Bonaventure, O., Hartert, R., Lebrun, D., Schaus, P., Tilmans, O., & Vissicchio, S. (2017). Robust and scalable software defined networks. Recuperado a partir de https://api.semanticscholar.org/CorpusID:41750697
Dac, C. T., Tran, H. T. T., Huong, T. T., Tran, S., Thanh, N. H., Ngoc Nam, P., & Thang, T. C. (2021). Qoe-aware video adaptive streaming over http. In 2020 IEEE Eighth International Conference on Communications and Electronics (ICCE) (pp. 117-122). https://doi.org/10.1109/ICCE48956.2021.9352077
FFmpeg. (2024). A complete, cross-platform solution to record, convert and stream audio and video. Recuperado a partir de https://www.ffmpeg.org/
Gomezcoello, M., & Picón, J. (2024). Desarrollo e implementación de un algoritmo de control de video adaptativo en entornos de redes definidas por software (SDN). Recuperado a partir de https://github.com/marlonpikis/trabajo-titulacion
Jiawei, W., Xiuquan, Q., & Guoshun, N. (2018). Dynamic and adaptive multi-path routing algorithm based on software-defined network. International Journal of Distributed Sensor Networks, 14(10), 1550147718805689. https://doi.org/10.1177/1550147718805689
Jon Dugan, B. A. M. J. P., Seth Elliott, & Prabhu, K. (2024). iperf - the ultimate speed test tool for tcp, udp and sctp. Recuperado a partir de https://iperf.fr/
Khan, K. (2023). User-centric algorithms: Sculpting the future of adaptive video streaming. International Transactions on Electrical Engineering and Computer Science. Recuperado a partir de https://api.semanticscholar.org/CorpusID:268910394
Li, W., Huang, J., Wang, S., Wu, C., Liu, S., & Wang, J. (2023). An apprenticeship learning approach for adaptive video streaming based on chunk quality and user preference. IEEE Transactions on Multimedia, 25, 2488-2502. https://doi.org/10.1109/TMM.2022.3147667
Lin, Z. (2015). Research on video traffic control technology based on sdn. Recuperado a partir de https://api.semanticscholar.org/CorpusID:55442197
Makolkina, M., Muthanna, A., & Manariyo, S. (2017). Quality of experience estimation for video service delivery based on sdn core network. In Next Generation Teletraffic and Wired/Wireless Advanced Networking. Recuperado a partir de https://api.semanticscholar.org/CorpusID:43433926
Sam, G. (2023). In 2022, 65% of all internet traffic came from video sites. Recuperado a partir de https://www.tubefilter.com/2023/01/20/sandvine-video-data-bandwidth-internet-traffic-report-streaming-video-youtube-netflix/
Sayit, M., Cetinkaya, C., Yildiz, H. U., & Tavli, B. (2019). Dash-qos: A scalable network layer service differentiation architecture for dash over sdn. Computer Networks, 154, 12-25. https://doi.org/10.1016/j.comnet.2019.02.015
Sheu, J.-P., Chang, C., & Chang, Y.-C. (2015). Efficient multicast algorithms for scalable video coding in software-defined networking. 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2089-2093. Recuperado a partir de https://api.semanticscholar.org/CorpusID:12455700
Storck, C. R., & Duarte-Figueiredo, F. (2020). A performance analysis of adaptive streaming algorithms in 5g vehicular communications in urban scenarios. In 2020 IEEE Symposium on Computers and Communications (ISCC) (pp. 1-7). https://doi.org/10.1109/ISCC50000.2020.9219682}
Team, D. S. (2020). Regla empírica. Recuperado a partir de https://datascience.eu/es/matematica-y-estadistica/regla-empirica-que-es/
Witte, R., & Witte, J. (2017). Statistics. Wiley. Recuperado a partir de https://books.google.com.ec/books?id=KcxjDwAAQBAJ
Yamansavascilar, B., Baktir, A. C., Ozgovde, A., & Ersoy, C. (2020). Fault tolerance in sdn data plane considering network and application based metrics. Journal of Network and Computer Applications, 170, 102780. https://doi.org/10.1016/j.jnca.2020.102780