This study employs advanced data mining techniques to comprehensively analyze Ecuador's import data spanning three decades, from 1990 to 2021. By leveraging the k-means clustering algorithm, we meticulously identified anomalies within tariff items. The study utilized a comprehensive dataset that encompassed tariff items, years, and critical variables such as import volume, CIF and FOB values, import cost, and trade attractiveness. The data mining model generated insightful reports that accurately pinpointed an omalous patterns in tariff items. These reports empower experts to delve into the underlying causes of these anomalies, enabling them to make well-informed decisions to optimize Ecuador's import strategies. Our research underscores the transformative potential of data mining in detecting import anomalies, providing valuable intelligence for the strategic management of Ecuador's foreign trade. The findings contribute significantly to the prevention of customs fraud and unfair trade practices, ultimately enhancing the competitiveness of the country's import sector.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Al Ayub Ahmed, A., Rajesh, S., Lohana, S., Ray, S., Maroor, J. P., & Naved, M. (2023). Using Machine Learning and Data Mining to Evaluate Modern Financial Management Techniques (pp. 249-257). https://doi.org/10.1007/978-981-19-0108-9_26
Banco Central del Ecuador. (2023). Estadísticas de Comercio Exterior.
Djayeola, B. M., & Fujs, T. (2018). Policies, Technology, and Quality Returns from the World Development Indicators. Statistika: Statistics & Economy Journal, 98(4).
Gonzáles Argote, H. R., & Ticona Gonzáles, U. A. (2019). Clustering, mediterraneidad y comercio internacional: aplicación empírica de los algoritmos Partitioning Around Medoids y K-means. Revista Latinoamericana de desarrollo económico, 32, 95-129.
López, D. S. M., Orellana, M., Tonon Ordóñez, L. B., & Zambrano-Martinez, J. L. (2023). Modelo Visual del Comercio Externo en Exportaciones Ecuatorianas. Revista Tecnológica-ESPOL, 35(2), 143-156.
Morales Zurita, G. B. (2023). La inflación y el comercio exterior agropecuario en el Ecuador. Universidad Técnica de Ambato. Facultad de Contabilidad y Auditor’ia. Carrera~….
Orellana, M., Acosta-Urigüen, M.-I., & García, R. R. (2022). Implementation of Clustering Techniques to Data Obtained from a Memory Match Game Oriented to the Cognitive Function of Attention (pp. 201-216). https://doi.org/10.1007/978-3-031-18272-3_14
Plotnikova, V., Dumas, M., & Milani, F. P. (2022). Applying the CRISP-DM data mining process in the financial services industry: Elicitation of adaptation requirements. Data & Knowledge Engineering, 139, 102013. https://doi.org/10.1016/j.datak.2022.102013
Quintana, R. A., Donoso, M. R., Kusactay, V., Chagerben, W. M., & Espinoza, J. B. (2021). Introducción al Comercio Exterior. Liveworkingeditorial.
Suárez, Y. R., & Amador, A. D. (2009). Herramientas de minería de datos. Revista Cubana de Ciencias Informáticas, 3(3-4), 73-80.
Tan, X. S., Yang, Z., Benlimane, Y., & Liu, E. (2020). Using Classification with K-means Clustering to Investigate Transaction Anomaly. 2020 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 171-174.
The World Bank Group. (2024). World Development Indicators.
Wohl, I., & Kennedy, J. (2018). Neural Network Analysis of International Trade.
Wulff, J. N., & Jeppesen, L. E. (2017). Multiple imputation by chained equations in praxis: guidelines and review. Electronic Journal of Business Research Methods, 15(1), 41-56.

