Links Related Generation to Transcribed Texts for YouTube Videos

Pablo Martinez Leon
https://orcid.org/0000-0002-9269-346X
Marcos Orellana
https://orcid.org/0000-0002-3671-9362
Abstract

The way people learn has undergone a significant transformation thanks to the advancement of technology. Various digital tools complement daily and academic activities, facilitating access to updated and diverse information. The Internet, in particular, has positioned itself as the primary source of information, offering a large amount of textual and audiovisual content, with short content in the form of videos being the most popular. However, the learning process inevitably involves acquiring new concepts and terms. When encountering unfamiliar vocabulary in videos, people often search for additional information to understand the content better. Therefore, this research seeks to develop a tool capable of analyzing video transcripts using Natural Language Processing techniques to identify key terms and relate them to other relevant information sources, thus facilitating learning. When evaluating the relevance of terms to the textual content of videos on various topics using an Artificial Intelligence model, a relevance greater than 75% was evidenced for all terms. This confirms the efficacy of this approach for analyzing and understanding the textual content of transcribed videos.

DOWNLOADS
Download data is not yet available.
How to Cite
Martinez Leon, P., & Orellana, M. . (2024). Links Related Generation to Transcribed Texts for YouTube Videos. Revista Tecnológica - ESPOL, 36(E1), 39-51. https://doi.org/10.37815/rte.v36nE1.1206

References

Burstein, J. (2009). Opportunities for natural language processing research in education. Computational Linguistics and Intelligent Text Processing: 10th International Conference, CICLing 2009, Mexico City, Mexico, March 1-7, 2009. Proceedings 10, 6-27.

Campos, R., Mangaravite, V., Pasquali, A., Jorge, A., Nunes, C., & Jatowt, A. (2020). YAKE! Keyword extraction from single documents using multiple local features. Information Sciences, 509, 257-289. https://doi.org/10.1016/j.ins.2019.09.013

Chang, A., Savva, M., & Manning, C. D. (2014). Semantic parsing for text to 3d scene generation. Proceedings of the ACL 2014 workshop on semantic parsing, 17-21.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Ferreira-Mello, R., André, M., Pinheiro, A., Costa, E., & Romero, C. (2019). Text mining in education. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(6), e1332.

Hsin, W.-J., & Cigas, J. (2013). Short videos improve student learning in online education. J. Comput. Sci. Coll., 28(5), 253-259.

Litman, D. (2016). Natural Language Processing for Enhancing Teaching and Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 30(1). https://doi.org/10.1609/aaai.v30i1.9879

Litvak, M. (2019). Deep Dive into Authorship Verification of Email Messages with Convolutional Neural Network (pp. 129-136). https://doi.org/10.1007/978-3-030-11680-4_14

Manasrah, A. M., Masoud, M. Z., & Jaradat, Y. (2021). Short Videos, or Long Videos? A Study on the Ideal Video Length in Online Learning. 2021 International Conference on Information Technology (ICIT), 366-370. https://api.semanticscholar.org/CorpusID:236482423

Marujo, L., Grazina, N., Luis, T., Ling, W., Coheur, L., & Trancoso, I. (2011). BP2EP-adaptation of Brazilian Portuguese texts to European Portuguese. Proceedings of the 15th Annual conference of the European Association for Machine Translation.

Medelyan, O., Perrone, V., & Witten, I. H. (2010). Subject metadata support powered by Maui. Proceedings of the 10th annual joint conference on Digital libraries, 407-408. https://doi.org/10.1145/1816123.1816204

Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., & Gao, J. (2022). Deep Learning--based Text Classification. ACM Computing Surveys, 54(3), 1-40. https://doi.org/10.1145/3439726

Özgür, A., Özgür, L., & Güngör, T. (2005). Text Categorization with Class-Based and Corpus-Based Keyword Selection (pp. 606-615). https://doi.org/10.1007/11569596_63

Pal, S. K., Banerjee, R., Dutta, S., & Sarma, S. Sen. (2013). An Insight Into The Z-number Approach To CWW. Fundamenta Informaticae, 124(1-2), 197-229. https://doi.org/10.3233/FI-2013-831

Pourpanah, F., Lim, C. P., Wang, X., Tan, C. J., Seera, M., & Shi, Y. (2019). A hybrid model of fuzzy min–max and brain storm optimization for feature selection and data classification. Neurocomputing, 333, 440-451. https://doi.org/10.1016/j.neucom.2019.01.011

Shukla, H., & Kakkar, M. (2016). Keyword extraction from Educational Video transcripts using NLP techniques. 2016 6th International Conference - Cloud System and Big Data Engineering (Confluence), 105-108. https://doi.org/10.1109/CONFLUENCE.2016.7508096

Turney, P. D. (2000). Learning Algorithms for Keyphrase Extraction. Information Retrieval, 2(4), 303-336. https://doi.org/10.1023/A:1009976227802

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł. ukasz, & Polosukhin, I. (2017). Attention is All you Need. En I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in Neural Information Processing Systems (Vol. 30). Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Wang, W., Zheng, V. W., Yu, H., & Miao, C. (2019). A Survey of Zero-Shot Learning. ACM Transactions on Intelligent Systems and Technology, 10(2), 1-37. https://doi.org/10.1145/3293318

Ye, Z., Geng, Y., Chen, J., Chen, J., Xu, X., Zheng, S., Wang, F., Zhang, J., & Chen, H. (2020). Zero-shot Text Classification via Reinforced Self-training. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 3014-3024. https://doi.org/10.18653/v1/2020.acl-main.272

Zhang, Y., Yuan, C., Wang, X., Bai, Z., & Liu, Y. (2022). Learn to Adapt for Generalized Zero-Shot Text Classification. Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 517-527. https://doi.org/10.18653/v1/2022.acl-long.39